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Abstract. Quantum group .Agp is conmstructed and investigated. The Hopf algebra
structure of the differential calculus on the quantum Euclidean space is given. Elements
of the theory of representation of .A4y are presented in comparison with the general
method described by Fadeev, Reshetikhin and Takhtajan. .Agp at roots of unity is
analysed.

1. Introduction

In recent years quantum groups have attracted the attention of a large group of
mathematicians and physicists. From the mathematical point of view quantum groups
are understood in two different ways: as (quasi-triangular) Hopf algebras [1,4,6] or
as C* algebras [16]. In the former the concept of quantum groups arises from the
quantum method of solving the inverse problem [7] and from the effective methods
for solving the quantum Yang-Baxter equation [5, 8]; in the latter the quantum group
becomes an interesting example of operator algebra and non-commutative geometry
11).
[ ]On the other hand differential structures on quantum groups [15] and quantum
spaces [14] are of great practical importance. They arise from the concept of non-
commutative differential geometry [3]. The quantum hyperplane is the simplest
example of a non-commutative space. Differential structures on the gquantum
hyperplane were classified in [2]. In this article we construct a non-commutative and
non-co-commutative Hopf algebra (quantum group) .4, which is an N-dimensional
generalization of the Hopf algebra considered in [13]. The Hopf algebra A, is
isomorphic to the algebra O of differential operators related to the calcuius on the
N -dimensional quantum hyperplane. In this way we prove that O is a Hopf algebra
and answer (partially) the question asked by Manin in [10].

We also present a representation theory of A, and discuss the possibility of a
construction of A, in the case when the deformation parameters are roots of unity.
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2. Construction of A
Let A, = C[[Xy,... XN, P,... Pyl]l/{,, (formal power series in 2N variables)

N € N, where [, is a two-sided ideal in (CTFX[, vees Xpy Py oo, Pyl] given by the
following relations

X X;=9;X;X;  BP=FFR )
XiP; = q;; B X; (i # 3) X P, =p, P X; 2)
where p;,q; € C— {0}, g;; = ¢;i, 4,5 = 1,..., N. A, is an associative algebra

with unity /. For the time being we assume that all parameters are not roots of unity.
Introducing C-linear maps Ag, Ay A, — A, @ Ay, and €: .4, — C defined as

Ap(X;) =X, @I+ P o X A(X)=ToX;+X,0F,
Ap  (P)=F,&F Ag () =1l
(X)=0 e(P) =¢(I)=1 3

we equip A,, with a bialgebraic structure (cf [1D) (ie. Ag.€ are algebra
homomorphisms). Furthermore, if we assume that all P, are invertible and define
C-linear maps Sy, Sg ' A, = A, such that:

Sg(P;) = P Sp(X;)=-P7'X; Sp(I) =1 4
Su(P) = P! Si(Xx;)=-X,P! S =1 )

then we can make (A, ,Ag,¢, Sp), (A
groups).

Let us denote the set of all bialgebras (A, Ag, ) ((A,,, A ,¢€) respectively)
by Bigg,(Big, respectively) and the set of all Hopf algebras (A,,,Ag,€,S5g)
((Agp, Ay, €, Sy ) respectively) by Hopfg (Hopfy respectively). If A, € Hopfy is
generated by the set {X;, F,} then elements ¥; = P7'X,, @, = P. generate an
algebra A1, € Hopf,. Hence the sets Hopfy and Ilopf, are isomorphic. Hence
we can restrict ourselves to the elements of Bigg , Hopfy only. To avoid unnecessary
complications in the notation we omit the subscripts R.

Due to [6] (cf [12]) we say that A%, is a complexification of A, if AL, is a
*-Hopf algebra (i.e. a Hopf algebra with involution). We also say that algebra .Af;p
is a realification of A,, if A}, is a *-Hopf algebra and X} = X;, Pf = P; for any
i=1,...,N. One can easily see that A , € Hopf admits realification if and only if
9;;.P; € 51, If, moreover, N is even and G50 = QG Qi = qQioi> P; PR = 1, where
Y=N+1-4,7=N+1-3,¢,5=1,..., N then A,, can be complexified in
such a way that X} = X, P’ = P,.

Ap,¢€, 8 ) into Hopf algebras (quantum

qp? qp?

3. Differential operators on the quantum Euclidean space

As is well known [11] the N-dimensional quantum Euclidean space (or, precisely, the
space of functions on the N-dimensional quantum hyperplane) is undersiood to be
the algebra

cV =z, ..., 2]/ (a'2) - gz 2)
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where g;; = ¢;i' € C- {0}, 4,5 = 1,...,N. B introduce differential structure
on the quantum hyperplane we have to define the C-linear, nilpotent operation d on
CV, taking values in the C)-bimodule A'CY, generated by the elements dz*, i.e. any
element w € A'CY is of the form Y5, dz*w,, where w, € CV, To make d into
an exterior differential we have to require that d obeys the Leibniz rule. Notice that
since AICY is a CY-bimodule, every element w € A'C} can also be represented as
Yo whde. In general w # w;.

Having defined exterior differentiation one can define derivatives (right and left)
on CV, ie. the linear operators DF, D} : CN¥ — C} such that

N N
df =) dz*D}y df =y Difdz*
k=1 k-1

for any f € CY. Differential caiculus being non-commutative implies that left
derivatives differ from the right ones. Moreover derivatives do not obey the
Leibniz rule. Instead one finds that there exist operators 77,75 : CY — CV,
i, =1,..., N such that

N
D} fg) =Dl fg+ > TE fDig
i=1

N
D (fg) = fDrg+ > DrfThg

=1
(f,g €CN).
According to [2] there exists a differential calculus (family Iy over C)V given by
the relations:

zida! = 9 dal 2t (i # 5) ztda’ = p;da’e’ ©

where p; € C — {0}. Right derivatives take the form:

1 f(a:l‘,...,m“"l,pim“',mi“,...,mN)—f(ml,...,a:N)
1

R 1 Ny —
D,'f(il?,...,.’!} )""'w P,'—l

where

flaly )= 30 fi @) (=)

TlyrenyiN

f,-_l___,-N € C. The symbol 1/z* means that one has to transport the variable
z* to the left and then decrease the power of «° by one. It is not difficult
to establish that DED} = g,;DFDR and that matrix TR = (T}) has the form
TR = diag(TR,...,TY), where

R 1 Ny 1 2 i—1 K] 1
I; flety 27 ) = flgue', gua®, .., g g 2 =P£321Qi+h’$z+ls"'*‘TN:"L'N)
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Putting w = (2)™ ... (zV)"¥ we get
DRTR(w) = pinyly, (q=")™ - (goy @ ™) (i)™ (g™ )™
TRDR (w) =[], (e’ )™ - (o™ )™ (o)™~ - (g™
DF'-I:«B(w) = q;; [nz']p,(qu‘”l)m "'(qg'-ljfci'l)n"‘(qz‘jmi)n'_l ‘ "(fINj“-'N)nN
T}DR (w) = [, (q et )™ - (g™ gy )™ ! (g ™ )

where [n],, = (p?—1)/(p;—1). This immediately allows us to establish commutation
relations between Ds and T's, namely:

TRTR =TRTR  DRTR =p,IFD}  DRTR=q,;7RDY  (G#5). (D

Comparing (7) with (1) and (2) we see that the algebra O generated by the
right derivatives D} and matrix T® is isomorphic to A, € Big, hence it possesses
a bialgebraic stucture. One can easily repeat this consideration, replacing right
derivatives by the left ones and T® by 7% Moreover, since operators T are

invertible, the bialgebra O becomes Hopf algebra with the antipode defined by the
relation (4).

4. Representations of A,

Construction of the algebra ¢ and its isomorphism to A , suggests an immediate
representation of the latter in the space Fp of C-analytic functions of N -variables. If
we denote by L£(F,;) the space of all linear operators in F,,; then the representation

7 1 Agp — L{F ) in question is given by the rclations

o=l pt ot e V) - f(ah ..., aN)

R(X) (o) = L LD

p;—1
(B f(ely. 2™y = flapet gue?s o qi e T hpirt gt g ™)
(PO (!, ..., 2N)
= flaae", g2y gz e e g 2 e,

In the theory of quantum groups (Hopf algebras) an important role is played
by the notion of a co-module of the quantum group. If A is a Hopf algebra then
the algebra V is called a /ft A-co-module if there exists an algebra homomorphism
§:V — A® V such that

(d,@6)6=(Agid,)§  (¢®id)é=id,. ®)

Usually such a co-module V is interpreted (cf [6]) as & quantum space, covariant with
respect to the action of the quantum group A. Any A € Hopf can be associated
with a space V' = C[[v,,...,vy]]/ 1y, where I, is a two-sided ideal in the algebra
Cl{vy, - - - » o ]] generated by the elements

ViVigN T VipN s Vis NN — ViaN VigN ViU = g o)
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where ¢, = 1,..., N, The co-action & is given by the relations
$(v;) =Fov;+ X, Bvy 6(vipn) =1 v, . (10)

Assume again that 4 is a Hopf algebra. According to [16] we say that
Y= (u,-j){“;-zl € My (A) (here M (A} stands for the space of all X x K matrices
with entries from 4) is a K-dimensional co-representation of A if

K
Alu) =Y up ®uyy  e(uy) = 6. @an
k=1

Two co-representations u € M, (A), w € M (.A) are said to be equivalent if there
exists an invertible element A € My, - (C) such that Au = wA.

Applying these definitions to any .4, € Hopf one finds that the matrix
u € Myn(A,,) with only non-zero entries:

u; = B Uip Nip N — { Uiipn = X; (12)

i =1,...,N is a co-representation of 4,,. This co-representation is called a
fundamental co-representation of A4, .

It is not difficult to obtain another 2/V-dimensional co-representation of A,
namely w € M,y (A,,) with only ron-vanishing elements w;; =/, w; nyiyn = E,
Wi ni = X;»  But co-representations w and « are equivalent in the sense
described above, and the matrix A € M,n(C) has only non-vanishing elements
a,:,-+N = a,-+N,- = 1, i= 1,.-.,N.

Comparing the definition of the elements of Big with the procedure described by
Faddeev ef al [6] (via the R matrix and relations Ruu, = u,u; £} one can casily
show that the R matrix giving the relations (1} and (2) does not exist for a general
choice of parameters p;,g;;. This means that our Hopf algebra is not an algebra
of functions on any quantum matrix algebra in the sense of [6]. Bialgebra A _, can
be obtained from the R-matrix if p, = 1, ¢ = 1,...,N. Here, for u we take the
fundamental representation of A, (12) and then R € My, (C) consists of the
following non-zero elements (7,7 = 1,...,N):

R

Ripnjsnianian = Bipnjian = Biipnjign =1 iii = i

5. A,, at roots of unity

In this section we assume that all parameters defining A4, are roots of unity, i.e. that
there exist integer numbers n;;, m; > 1 such that

(g;;)™ = (p;)™ =1 (13)

(we assume that n;; and m; are the smallest numbers obeying (13)). Condition
‘q;;, p; are roots of unity’ immediately implies that deformation parameters lie on
the unit circle (g;;,p; € S'), hence it is possible to define the *-bialgebra AR,
as a realification of A ,. If we now denote by M; the least common multiple of
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the numbers n;;, m;, j = 1,..., N (¢ fixed) (ie. M; = LOM(my,n;y,..0, 0 ))
then PM, i = 1,...,N belongs to the centre of A, Since ¢ is an algebra
homomorphism and ¢(P;) = 1, ¢( PM*) = 1. This means that we can put PM: = I,
therefore make any F; invertible and define Hopf algebra structure on A,,. Using a

similar argument one can establish that X' is forced to disapear in any irreducible
representation of A4,,. This condition seems to be strong and leads to the conditions
which have to be put on p; and g;; in order to preserve the homomorphicity of A,

ie. XM = 0 implies
A(X )M =0. (14)
In general we have
M,
AX)M = (X, 0 [+ B X)" =3 i, BFXM o X
k=0

where the coefficients ¢, € C, n €N, k=0,1,...,n,i=1,2,..., N are defined
inductively

. Ik , D
Chitk = Pi t :Lk 1+ chk Cho = Cpp = 1 (15)
k=1,...,n=-1,neN,t=1,...,N. These equations have a well known solution:

cz — [n]p‘!
S 5

where [n].! = [1].[2], - -[n], is 2 quantum factorial. Coefficients ¢, are then
Gaussian polynomials or g-binomial coeficients.
Condition (14) is then equivalent to the condition

Chr =0 (16)

k=1,...,M;-1Li=1,...,N.
Let us consider polynomials W, € C[z], i =1,... , N

Wi(z) = ]:[(m +p.*) = sz ad

One can easily check that Sy = pi"ff’”‘“)/zdjulk, k= 0,1,..., M, obey
conditions (15) therefore di, ; = p,*(F+1/2¢f, | hence condition (16) is equivalent
to the following equation

M‘ . "
k=1

where (wi)M = —1.
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Equation (17) shows that condition (16} is equivalent to the existence of the
permutations o; : {1,...,M;} — {1,..., M,} such that

w2 M = —pk, (18)

Comparison of the arguments of the left- and right-hand sides of (18) gives that
(18) is equivalent to the following

oi(k) = [ke; + (1~ a;)(1+ M,;}/2Jmod M; (19)

where a; € {1,..., M,} are such that arg(p;) = (2na;)/M;, i =1,...,N. The
functions o, are permutations if and only if

LCD(ey, M;) = 1 20)

(here the abbreviation LcD denoctes the largest common divisor). This is the required

condition which one has to put on the parameters p; in order to preserve the

homomorphicity of A. Notice that parameters g;; can be completely freely chosen.
The last consideration can be summarized in the following proposition.

Proposition. 1et g;,p; € S' be given by equation (13) and M, =
LCM(m,, 7y, - .-, N ). Let arg(p;)} = 2wa;/M;, where a; € {1,...,M;}. Then
A, has a bialgebraic structure in the sense of (14) if and only if LCD(M,,a;) = 1,
forany i e {1,...,N}.
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